

Bienvenue

Présentation du projet Diffusion du motion design d'Imerys

2

Présentation du débat public et de la soirée Mathias Bourrisoux, Président du débat public

Un débat sur quatre mois

MARS Lancement

Réunion d'ouverture (Moulins et visio, 12 mars)

Forum participatif (Gannat, 14 mars)

Une mine à Echassières ? (Echassières, 26 mars)

Une plateforme ferroviaire à Saint-Bonnet?

(Saint-Bonnet, 27 mars)

Une usine de lithium à Saint-Victor ? (Montluçon, 4 avril)

AVRIL - MAI Grands enjeux

Lithium, transition et souveraineté (Paris et visio, 9 avril)

Les techniques de production du lithium aujourd'hui et demain (visio, 16 avril)

Les impacts environnementaux et sanitaires (Saint-Pourçain et visio, 22 avril)

Les retombées pour le territoire (Saint-Eloy et visio, 14 mai)

MAI-JUIN Approfondissements

Les premiers enseignements du débat (Clermont-Ferrand et visio, 23 mai)

Les impacts sur l'eau (Vichy, 30 mai)

JUIN-SEPTEMBRE Conclusions

Et après le débat : la vie du projet et l'après-mine (Echassières, 20 juin)

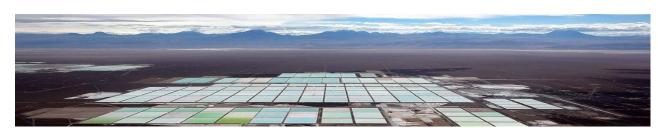
Approfondissement des sujets du débat (Montluçon et visio, 22 juin)

Synthèse des enseignements du débat (Gannat et visio, 8 juillet)

Été : Compte-rendu

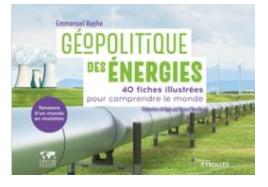
Réunion de restitution (Lieu à déterminer, septembre)

Mise en perspective de la réunion Marc Papinutti, Président de la CNDP



Enjeux géopolitiques et économiques d'une transition bas-carbone

Emmanuel Hache Economiste-prospectiviste - IFPEN


COMMISSION NATIONALE DU DÉBAT PUBLIC (CNDP) 09 AVRIL 2023

BATTERIES ELECTRIQUES, EOLIENNES, PANNEAUX SOLAIRES, SMARTPHONES, ÉLECTROLYSEURS, PILES À COMBUSTIBI

TRANSITION ÉCOLOGIQUE: ENTRE AMBITIONS ET RÉALITÉ

Dr. Emmanuel HACHE, HDR, Adjoint scientifique et Economiste-Prospectiviste, IFPEN, <u>emmanuel.hache@ifpen.fr</u> Chercheur associé à Economix Université Paris-Nanterre et Directeur de recherche à l'IRIS

DES OBJECTIFS CLIMATIQUES

Limiter la hausse des températures

1850-1900 / 2100

Accord de Paris

Réduire les émissions de gaz à effet de serre*

1990 - 2030

1990-2021

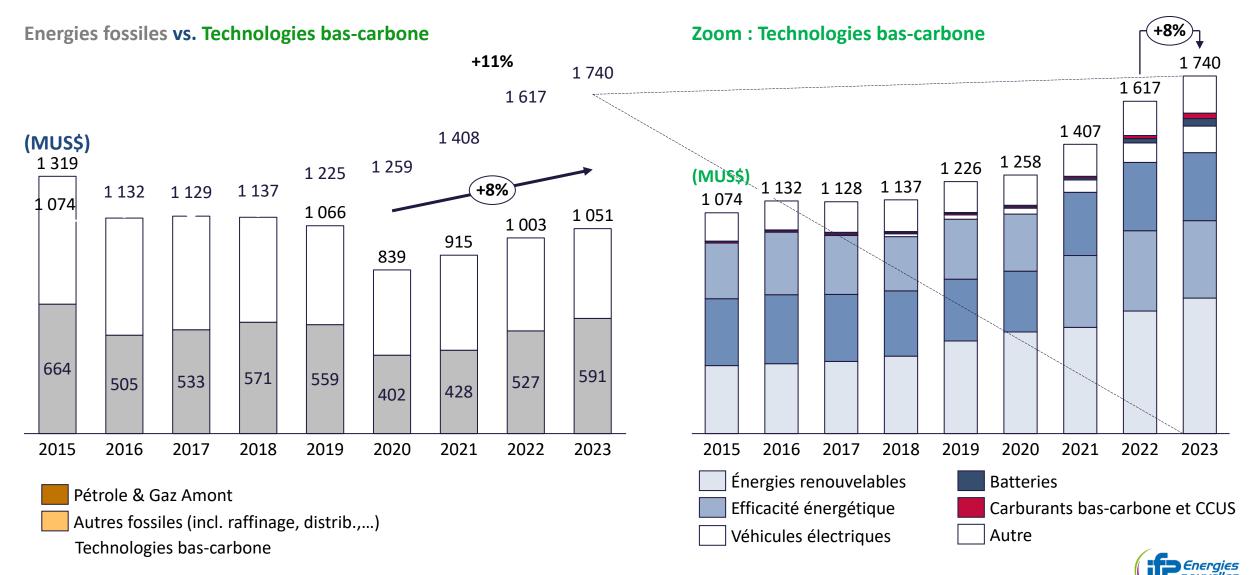
- 30 %

1990 - 2030



en cours de révision pour tenir compte du nouvel objectif européen

« La transition énergétique désigne une modification structurelle profonde des modes de production et de consommation de l'énergie [...]. Elle résulte des évolutions techniques, des prix et de la disponibilité des ressources énergétiques, mais aussi d'une volonté politique des gouvernements et des populations, entreprises, etc. qui souhaitent réduire les effets négatifs de ce secteur sur l'environnement »

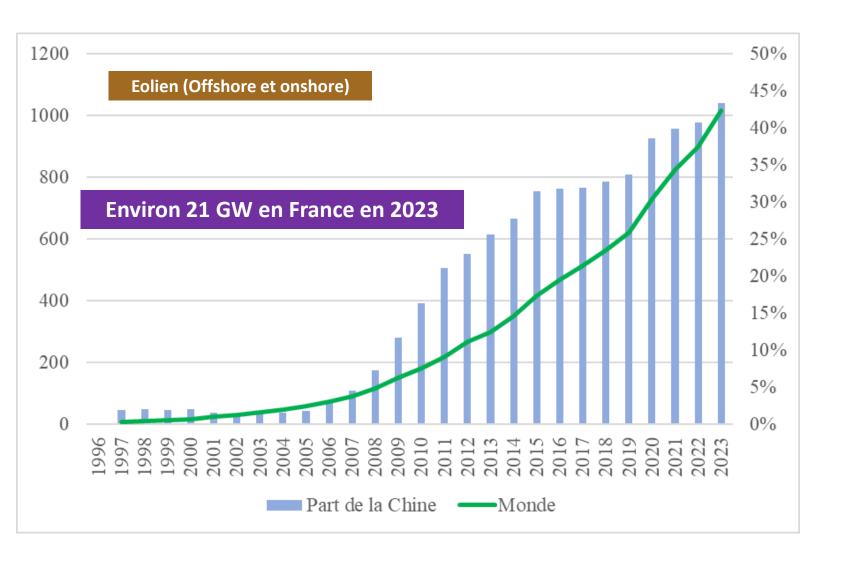

RÉPARTITION SECTORIELLE DES ÉMISSIONS DE GES DUES À LA COMBUSTION D'ÉNERGIE EN 2021


Y compris cogénération et autoproduction.
 Source : AIE. 2023

INVESTISSEMENTS TOUJOURS CROISSANTS, MAIS INSUFFISANTS POUR ATTEINDRE LA NEUTRALITÉ CARBONE

CAPACITÉS PV INSTALLÉES AU NIVEAU MONDIAL (EN GW)

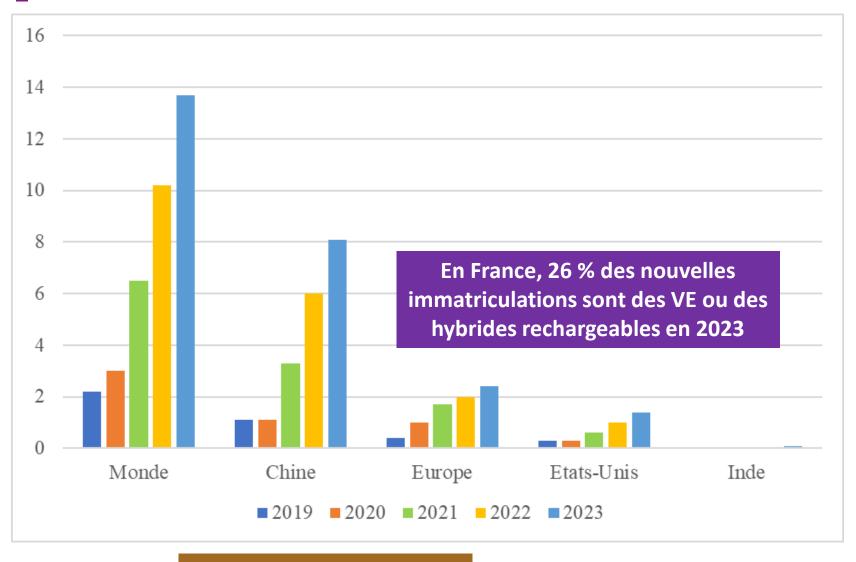
Capacité de PV : + 80 % en 2023 par rapport à 2022


420 GW installés en 2023 : un record !

Le déploiement du solaire au niveau mondial aurait évité
1,1 GT de GES (soit les émissions totales du Japon)

Sources: BNEF, AIE, 2024

CAPACITÉS ÉOLIEN INSTALLÉES AU NIVEAU MONDIAL (EN GW)


Capacité d'éolien : + 60 % en 2023 par rapport à 2022

117 GW installés en 2023 : un record depuis 2020!

Le déploiement de l'éolien au niveau mondial aurait évité 830 MT de GES (soit les émissions totales de l'Allemagne)

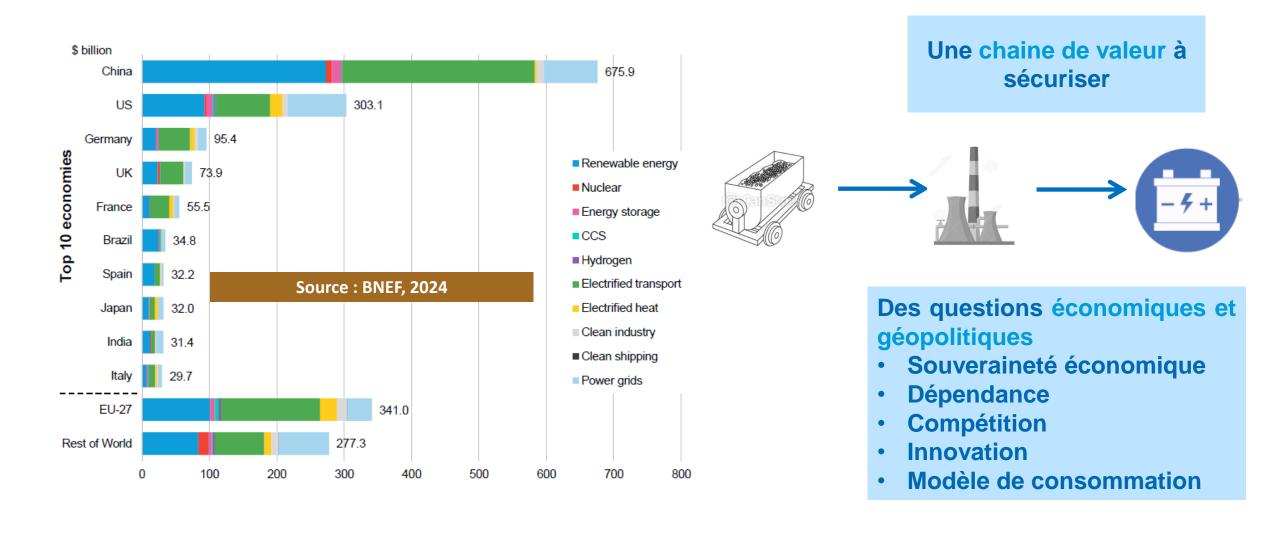
VENTES DE VÉHICULES ÉLECTRIQUES DANS LE MONDE (EN MILLIONS D'UNITÉS)

En 2023 : près de 14 millions de VE vendus dans le monde

20 % de parts de marché en 2023

Les ventes de VE ont augmenté de 35 % en 2023

Source: AIE, 2024


DES BESOINS EN MATÉRIAUX PAR CATÉGORIES DE TECHNOLOGIES BAS-CARBONE

	Aluminium	cobalt	cuivre	Lithium	Nickel	Platinoïdes	Terres rares
Solaire PV	+++	+	+++	+	+	+	+
Éolien	++	+	+++	+	++	+	+++
Hydraulique	++	+	++	+	+	+	+
CST	+++	+	++	+	++	+	+
Bioénergie	++	+	+++	+	+	+	+
Géothermie	+	+	+	+	+++	+	+
Nucléaire	+	+	++	+	++	+	+
Réseaux électriques	+++	+	+++	+	+	+	+
Véhicules électriques et batteries	+++	+++	+++	+++	+++	+	+++
Hydrogène	++	+	+	+	+++	+++	++

+ : besoins faibles ; ++ : besoins modérés ; +++ : besoins importants *PV : solaire photovoltaïque ; CST : centrale solaire thermique à concentration

DES BESOINS FINANCIERS ET UNE COMPÉTITION ÉCONOMIQUE

UNE GÉOPOLITIQUE DES ÉNERGIES RENOUVELABLES QUI SE STRUCTURE

Tableau 1. Éléments structurants d'une géopolitique des énergies fossiles et d'une géopolitique des énergies renouvelables

	Énergies fossiles	Énergies renouvelables		
Réserves et production	Production centralisée	Production décentralisée		
Commerce	Routes maritimes, oléoducs et gazoducs	Interconnexions		
Risques	Géographiques : détroits, routes maritimes	Fragilité des systèmes techniques, cybersécurité		
Structure des marchés	Marchés internationaux	Marchés locaux, régionaux		
Acteurs	Compagnies nationales, compagnies internationales, États	États, politiques publiques et acteurs privés		
Organisation des marchés	Oligopole (OPEP) et frange concurrentielle	Concurrence		
Concurrence économique	Très forte, mondiale	Forte, indirecte via l'accès aux équipements et matériaux		
Tensions géopolitiques	Récurrentes et liées à l'accès aux réserves ; nationalisme des ressources	En construction et relatives à l'accès aux équipements bas-carbone et aux matériaux critiques		
Gouvernance	Multiple (AIE, OPEP, etc.) et fragmentée	Multiéchelle, en construction et recherche de <i>leadership</i>		

OPEP : Organisation des pays exportateurs de pétrole ; AIE : Agence internationale de l'énergie.

Source: Criqui et Hache, 2023

Question minérale
-Combien ?
Qui ?
Quelles conséquences ?
A quels coûts ?

Question des technologies et des équipements de la transition bascarbone
Qui ? Où ?
Quelles conséquences ?
A quels coûts ?

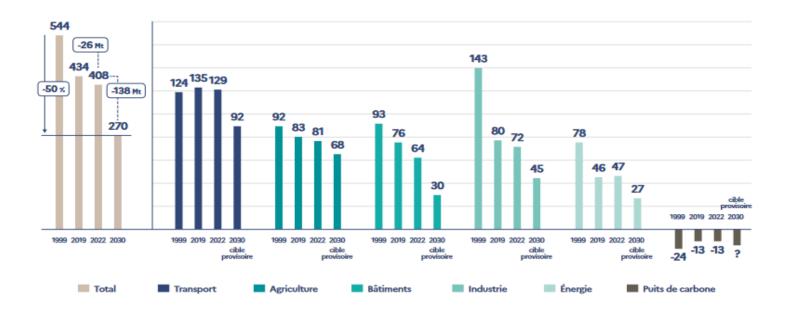
Question des modèles de consommation et de production -Quelles dynamiques de diversification pour les pays producteurs ?
Quels nouveaux modèles de consommation ?

UN SYSTÈME COMPLEXE

« Il ne faut pas distinguer la réflexion et l'action: c'est en faisant les choses qu'on transforme son imaginaire. Il faut commencer à vivre autrement, même si les gestes de départ sont symboliques, pour faire l'apprentissage d'un monde à inventer.

Daniel Cohen (1953-2023), Une brève histoire de l'économie, 2024.

Table-ronde n°1 Les besoins en lithium dans un contexte de transition énergétique



Les enjeux de la décarbonation

Répartition de l'effort par secteur pour atteindre les objectifs 2030 Emissions annuelles domestiques de GES réalisées en 1990, 2019 et 2022, résultats provisoires

des simulations 2030, en millions de tonnes équivalent CO₂

Sources: CITEPA / Transports hors soutes internationales

- Objectif neutralité carbone à l'horizon 2050 :
 - impératif de lutte contre le changement climatique
 - Renforcer la souveraineté énergétique en ne dépendant plus des hydrocarbures
 - Enjeux économiques : balance du commerce extérieur et localisation des chaînes de valeur

Véhicules particuliers

Véhicules utilitaires légers

Poids lourds 33

Aérien national 5

Maritime national - Fluvial 3

Deux-roues 1

129 **Transport**

Stratégie de décarbonation - Transports : Sobriété, report modal et électrification

- Agir sur l'ensemble des leviers pour les transports de personnes et de marchandises
- · Sobriété: Télétravail, Covoiturage, Economie de proximité,...
- Report modal : Transport en commun urbains, ferroviaire, vélo
- Electrification des véhicules :
 - Une solution particulièrement adaptée à la France avec une électricité quasi totalement décarbonée (nucléaire et renouvelable)
 - Enjeu de souveraineté, d'économie (balance commerciale) et de pouvoir d'achat
 - Concerne les VP (particuliers et entreprises), les VU et les Poids lourds
 - Les VE peuvent contribuer à la gestion de la courbe de charge dans un contexte avec plus de renouvelables
 - Autres applications des batteries : stockage stationnaire, engins industriels
 - Croissance importante des besoins en métaux mais à replacer dans le cadre de l'ensemble des activités extractives (y/c fossiles) et recyclabilité
 - Sobriété dans l'utilisation des matières : retenir les solutions adaptées en fonction des besoins

Stratégie industrielle pour assurer notre souveraineté et notre réindustrialisation

Bâtir un écosystème complet sur l'intégralité du cycle de la filière pour produire 2 millions de véhicules par an d'ici 2030

Extraction de métaux pour batterie Raffinage / transformatio n de métaux pour batterie

Fabrication de cathodes et d'anodes

Gigafactories de batteries

Production de véhicules

Recyclage de batterie

Développer une offre nationale et européenne compétitive répondant à un triple enjeu

- Economique
- Environnemental
- · Souveraineté industrielle
- Une stratégie s'inscrivant dans une dimension européenne : CRM Act, Règlement batteries
- Lithium:
 - un métal indispensable du fait de ses propriétés
 - une demande mondiale évaluée à 1,2 million de tonne/an de Li Métal dans le scénario AIE SDS; 180 kt de Li Métal produits en 2023, principalement extraites en Australie et Amérique du Sud, et transformées largement en Chine
 - des besoins français pour la mobilité situés entre 10 000 et 15 000 tonnes de Li Métal à l'horizon 2035, soit 15 % de la demande européenne
 - des projets français qui pourraient permettre de couvrir 2/3 de ces besoins nationaux (scénario haut de demande)
 - 2 Mtonnes/an de minerais envisagés pour le projet EMILI représentent 0,5% de l'extraction de matériaux en France

Benjamin Gallezot

Délégation interministérielle aux approvisionnements en minerais et métaux stratégiques (DIAMMS)

Fanny Verrax

Professeur associé – Transition écologique et entrepreneuriat social – EM Lyon

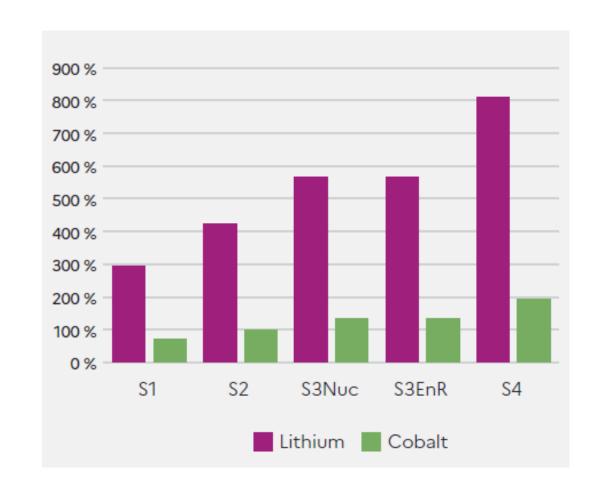
Stéphane Bourg

Observatoire français des ressources minérales (OFREMI)

Philippe Bihouix

Spécialiste des ressources minérales et des enjeux technologiques associés

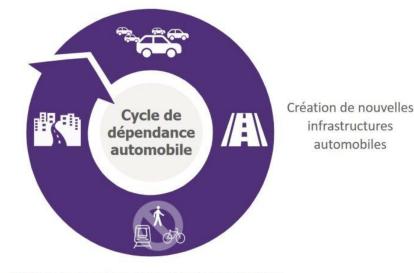
Les 4 scénarios de l'ADEME pour atteindre la neutralité carbone en 2050


Sobriété
Gouvernance locale
Impacts environnementaux maîtrisés
(éviter les impacts)

Pari de l'innovation technologique
Société mondialisée
Impacts environnementaux incertains
(réparer les impacts)

Les besoins annuels en métaux en fonction des différents scénarios

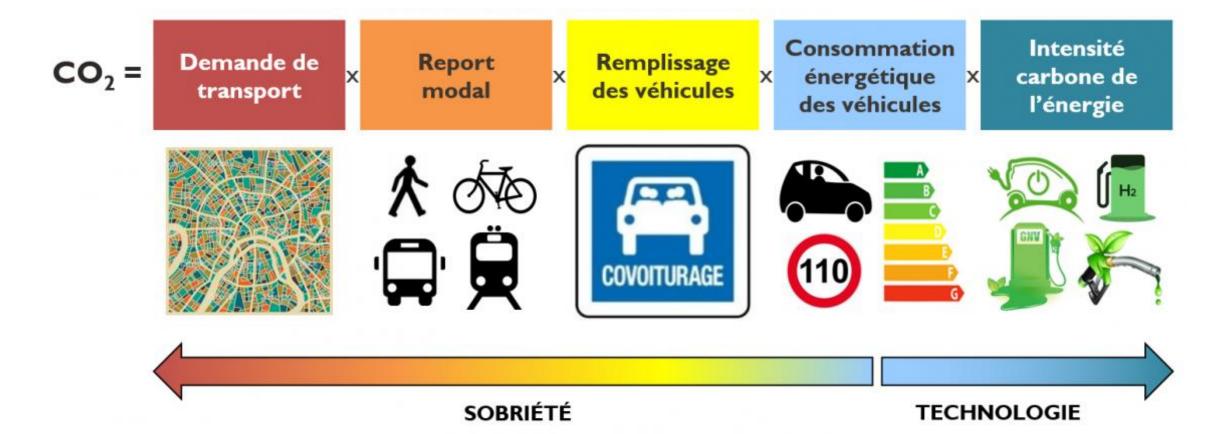
La demande en lithium varie de +300% de la demande actuelle* pour le S1 à +800% pour le S4.


* /moyenne annuelle entre 2015 et 2020

Le modèle de la voiture individuelle: un gaspillage de ressources énergétiques et minérales

- ☐ Déplacer 1-2 tonnes de matière pour transporter 100 kgs d'humain et bagages : un gaspillage énergétique
- ☐ Fabriquer des véhicules avec un taux d'utilisation de 5% : un gaspillage de ressources minérales
- ☐ Comparaison bâtiment
- → Une gabegie et un cercle vicieux
- → Nécessité sobriété

Augmentation de l'utilisation de l'automobile


Augmentation des

distances et

amplification de

l'étalement urbain

Réduction des choix de modes de transport et marginalisation des modes compétitifs à l'automobile

Les 5 leviers de la stratégie nationale bas-carbone (SNBC)

Temps de discussion En salle et sur zoom

Table-ronde n°2

Les enjeux de structuration d'une filière face aux enjeux d'autonomie et de souveraineté

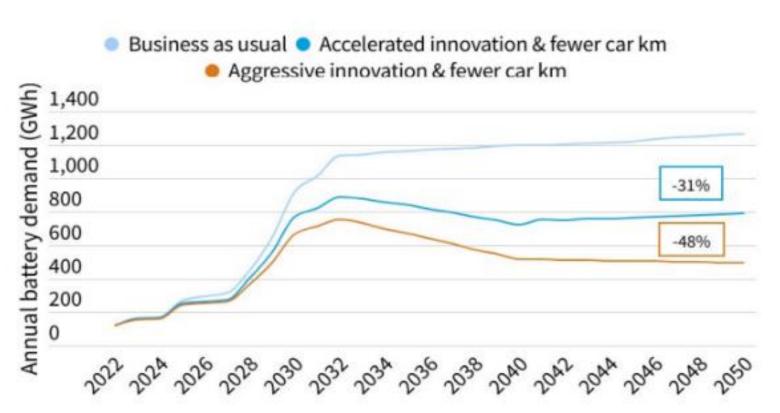
Cédric Philibert

Institut français des relations internationales (IFRI)

Antoine Gatet

France Nature Environnement (FNE)

Marie Chéron


Transport et Environnement

Matthieu Hubert

Automative Cells Company (ACC)

Battery demand from passenger transport in Europe

- 38 % de batteries en moins en 2050 et 31 % de batteries en moins cumulées jusqu'en 2050 dans le scénario "Accélération.
- environ 60 % de batteries
 en moins de batteries en
 2050 et 48 % de moins
 en cumulé dans le
 scénario "Innovation"

Notes: Percentage figures show the cumulative decline between 2022 and 2050 in the two scenarios

Figure 1: Battery demand from passenger transport in Europe

Cumulative battery raw materials demand until 2050 from passenger transport in Europe

Business as usual Accelerated innovation & fewer car km
 Aggressive innovation & fewer car km

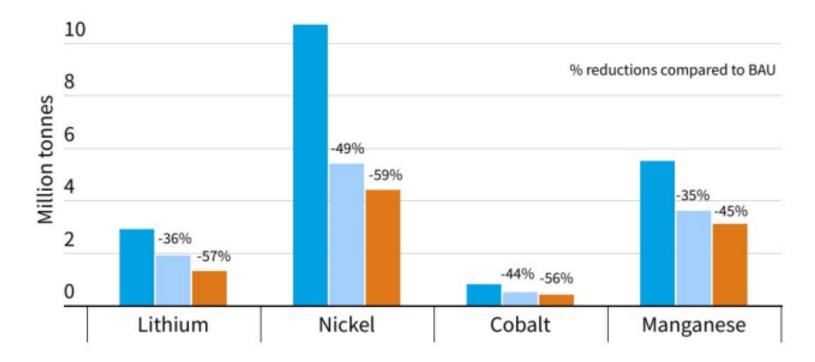


Figure 2: Cumulative battery raw materials demand until 2050 from passenger transport in Europe

Lithium demand from passenger transport in Europe

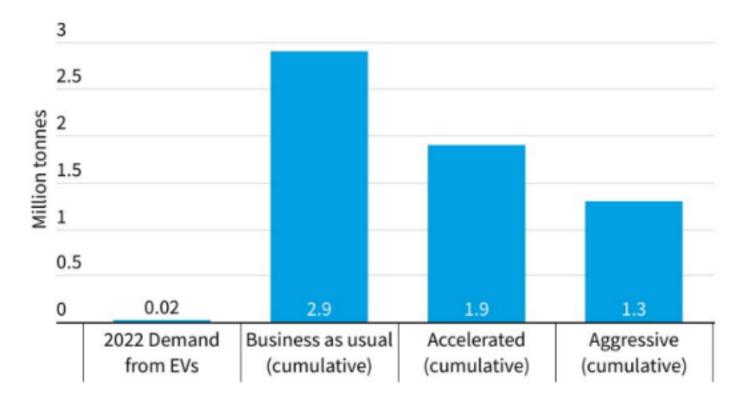
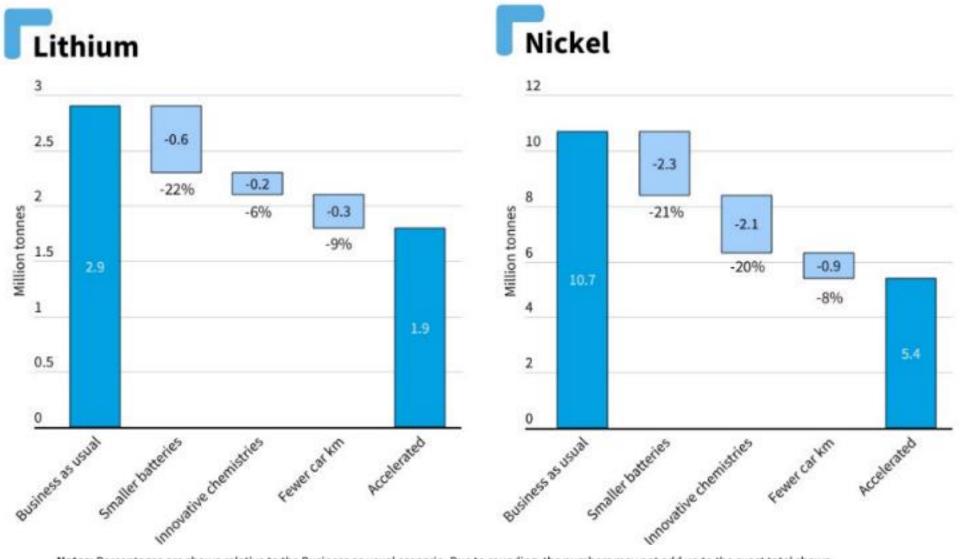



Figure 3: Lithium demand from passenger transport in Europe (2022 vs cumulative across the scenarios)

Notes: Percentages are shown relative to the Business as usual scenario. Due to rounding, the numbers may not add up to the exact total shown.

Figure 7: Contributing factors driving reduction in raw materials in the Accelerated scenario

Temps de discussion En salle et sur zoom

Retour à chaud et conclusion

Emmanuel Hache, économiste prospectiviste IFPEN

